Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Biomater Transl ; 2(4): 307-311, 2021.
Article in English | MEDLINE | ID: covidwho-1934625

ABSTRACT

Mesenchymal stem cells were developed as a cell-based therapeutic in the 1990's. The translation of culture expanded mesenchymal stem cells from a basic science focus into a modern therapeutic has taken 30 years. The current state of the basic science information argues that mesenchymal stem cells may be curative for coronavirus disease 2019 (COVID-19). Indeed, early small-scale clinical trials have shown positive results. The issue raised is how to assemble the resources to get this cell-based therapy approved for clinical use. The technology is complex, the COVID-19 viral infections are life threatening, the cost is high, but human life is precious. What will it take to perfect this potentially curative technology?

2.
Stem Cells Transl Med ; 11(7): 688-703, 2022 07 20.
Article in English | MEDLINE | ID: covidwho-1873996

ABSTRACT

MSC (a.k.a. mesenchymal stem cell or medicinal signaling cell) cell therapies show promise in decreasing mortality in acute respiratory distress syndrome (ARDS) and suggest benefits in treatment of COVID-19-related ARDS. We performed a meta-analysis of published trials assessing the efficacy and adverse events (AE) rates of MSC cell therapy in individuals hospitalized for COVID-19. Systematic searches were performed in multiple databases through November 3, 2021. Reports in all languages, including randomized clinical trials (RCTs), non-randomized interventional trials, and uncontrolled trials, were included. Random effects model was used to pool outcomes from RCTs and non-randomized interventional trials. Outcome measures included all-cause mortality, serious adverse events (SAEs), AEs, pulmonary function, laboratory, and imaging findings. A total of 736 patients were identified from 34 studies, which included 5 RCTs (n = 235), 7 non-randomized interventional trials (n = 370), and 22 uncontrolled comparative trials (n = 131). Patients aged on average 59.4 years and 32.2% were women. When compared with the control group, MSC cell therapy was associated with a reduction in all-cause mortality (RR = 0.54, 95% CI: 0.35-0.85, I  2 = 0.0%), reduction in SAEs (IRR = 0.36, 95% CI: 0.14-0.90, I  2 = 0.0%) and no significant difference in AE rate. A sub-group with pulmonary function studies suggested improvement in patients receiving MSC. These findings support the potential for MSC cell therapy to decrease all-cause mortality, reduce SAEs, and improve pulmonary function compared with conventional care. Large-scale double-blinded, well-powered RCTs should be conducted to further explore these results.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Aged , COVID-19/therapy , Cell- and Tissue-Based Therapy , Female , Humans , Male , Respiratory Distress Syndrome/therapy
4.
Stem Cells Transl Med ; 10(5): 660-673, 2021 05.
Article in English | MEDLINE | ID: covidwho-1008163

ABSTRACT

Acute respiratory distress syndrome (ARDS) in COVID-19 is associated with high mortality. Mesenchymal stem cells are known to exert immunomodulatory and anti-inflammatory effects and could yield beneficial effects in COVID-19 ARDS. The objective of this study was to determine safety and explore efficacy of umbilical cord mesenchymal stem cell (UC-MSC) infusions in subjects with COVID-19 ARDS. A double-blind, phase 1/2a, randomized, controlled trial was performed. Randomization and stratification by ARDS severity was used to foster balance among groups. All subjects were analyzed under intention to treat design. Twenty-four subjects were randomized 1:1 to either UC-MSC treatment (n = 12) or the control group (n = 12). Subjects in the UC-MSC treatment group received two intravenous infusions (at day 0 and 3) of 100 ± 20 × 106 UC-MSCs; controls received two infusions of vehicle solution. Both groups received best standard of care. Primary endpoint was safety (adverse events [AEs]) within 6 hours; cardiac arrest or death within 24 hours postinfusion). Secondary endpoints included patient survival at 31 days after the first infusion and time to recovery. No difference was observed between groups in infusion-associated AEs. No serious adverse events (SAEs) were observed related to UC-MSC infusions. UC-MSC infusions in COVID-19 ARDS were found to be safe. Inflammatory cytokines were significantly decreased in UC-MSC-treated subjects at day 6. Treatment was associated with significantly improved patient survival (91% vs 42%, P = .015), SAE-free survival (P = .008), and time to recovery (P = .03). UC-MSC infusions are safe and could be beneficial in treating subjects with COVID-19 ARDS.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , COVID-19/therapy , Mesenchymal Stem Cell Transplantation/methods , Cytokines/blood , Double-Blind Method , Female , Humans , Male , Mesenchymal Stem Cell Transplantation/adverse effects , Mesenchymal Stem Cells , Middle Aged , SARS-CoV-2/drug effects , Severity of Illness Index , Treatment Outcome , Umbilical Cord/cytology
5.
Angew Chem Int Ed Engl ; 59(46): 20545-20551, 2020 11 09.
Article in English | MEDLINE | ID: covidwho-966207

ABSTRACT

Modular construction of an autonomous and programmable multi-functional heterogeneous biochemical circuit that can identify, transform, translate, and amplify biological signals into physicochemical signals based on logic design principles can be a powerful means for the development of a variety of biotechnologies. To explore the conceptual validity, we design a CRISPR-array-mediated primer-exchange-reaction-based biochemical circuit cascade, which probes a specific biomolecular input, transform the input into a structurally accessible form for circuit wiring, translate the input information into an arbitrary sequence, and finally amplify the prescribed sequence through autonomous formation of a signaling concatemer. This upstream biochemical circuit is further wired with a downstream electrochemical interface, delivering an integrated bioanalytical platform. We program this platform to directly analyze the genome of SARS-CoV-2 in human cell lysate, demonstrating the capability and the utility of this unique integrated system.


Subject(s)
Biosensing Techniques/methods , Genes, Viral , SARS-CoV-2/genetics , COVID-19/pathology , COVID-19/virology , CRISPR-Cas Systems/genetics , Cell Line , Electrochemical Techniques , Humans , Nucleic Acid Amplification Techniques , RNA, Guide, Kinetoplastida/metabolism , SARS-CoV-2/isolation & purification
6.
Stem Cells Transl Med ; 9(9): 1007-1022, 2020 09.
Article in English | MEDLINE | ID: covidwho-428111

ABSTRACT

Severe cases of COVID-19 infection, often leading to death, have been associated with variants of acute respiratory distress syndrome (ARDS). Cell therapy with mesenchymal stromal cells (MSCs) is a potential treatment for COVID-19 ARDS based on preclinical and clinical studies supporting the concept that MSCs modulate the inflammatory and remodeling processes and restore alveolo-capillary barriers. The authors performed a systematic literature review and random-effects meta-analysis to determine the potential value of MSC therapy for treating COVID-19-infected patients with ARDS. Publications in all languages from 1990 to March 31, 2020 were reviewed, yielding 2691 studies, of which nine were included. MSCs were intravenously or intratracheally administered in 117 participants, who were followed for 14 days to 5 years. All MSCs were allogeneic from bone marrow, umbilical cord, menstrual blood, adipose tissue, or unreported sources. Combined mortality showed a favorable trend but did not reach statistical significance. No related serious adverse events were reported and mild adverse events resolved spontaneously. A trend was found of improved radiographic findings, pulmonary function (lung compliance, tidal volumes, PaO2 /FiO2 ratio, alveolo-capillary injury), and inflammatory biomarker levels. No comparisons were made between MSCs of different sources.


Subject(s)
Cell- and Tissue-Based Therapy/methods , Coronavirus Infections/therapy , Mesenchymal Stem Cell Transplantation , Pneumonia, Viral/therapy , Respiratory Distress Syndrome/therapy , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Infections/mortality , Coronavirus Infections/virology , Cytokines/metabolism , Humans , Lung/physiology , Mesenchymal Stem Cell Transplantation/adverse effects , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Pandemics , Pneumonia, Viral/mortality , Pneumonia, Viral/virology , Respiratory Distress Syndrome/mortality , Respiratory Distress Syndrome/virology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL